Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Journal of Zhejiang University. Science. B ; (12): 418-429, 2023.
Article in English | WPRIM | ID: wpr-982382

ABSTRACT

Efforts have been made to establish various human pluripotent stem cell lines. However, such methods have not yet been duplicated in non-human primate cells. Here, we introduce a multiplexed single-cell sequencing technique to profile the molecular features of monkey pluripotent stem cells in published culture conditions. The results demonstrate suboptimized maintenance of pluripotency and show that the selected signaling pathways for resetting human stem cells can also be interpreted for establishing monkey cell lines. Overall, this work legitimates the translation of novel human cell line culture conditions to monkey cells and provides guidance for exploring chemical cocktails for monkey stem cell line derivation.


Subject(s)
Animals , Haplorhini , Single-Cell Gene Expression Analysis , Pluripotent Stem Cells/metabolism , Cell Line , Signal Transduction , Cell Differentiation , Transcriptome
2.
Biol. Res ; 56: 17-17, 2023. ilus, tab, graf
Article in English | LILACS | ID: biblio-1439484

ABSTRACT

BACKGROUND: Spontaneous spheroid culture is a novel three-dimensional (3D) culture strategy for the rapid and efficient selection of progenitor cells. The objectives of this study are to investigate the pluripotency and differentiation capability of spontaneous spheroids from alveolar bone-derived mesenchymal stromal cells (AB-MSCs); compare the advantages of spontaneous spheroids to those of mechanical spheroids; and explore the mechanisms of stemness enhancement during spheroid formation from two-dimensional (2D) cultured cells. METHODS: AB-MSCs were isolated from the alveolar bones of C57BL/6 J mice. Spontaneous spheroids formed in low-adherence specific culture plates. The stemness, proliferation, and multi-differentiation capacities of spheroids and monolayer cultures were investigated by reverse transcription quantitative polymerase chain reaction (RT-qPCR), immunofluorescence, alkaline phosphatase (ALP) activity, and oil-red O staining. The pluripotency difference between the spontaneous and mechanical spheroids was analyzed using RT-qPCR. Hypoxia-inducible factor (HIFs) inhibition experiments were performed to explore the mechanisms of stemness maintenance in AB-MSC spheroids. RESULTS: AB-MSCs successfully formed spontaneous spheroids after 24 h. AB-MSC spheroids were positive for MSC markers and pluripotency markers (Oct4, KLF4, Sox2, and cMyc). Spheroids showed higher Ki67 expression and lower Caspase3 expression at 24 h. Under the corresponding conditions, the spheroids were successfully differentiated into osteogenic and adipogenic lineages. AB-MSC spheroids can induce neural-like cells after neurogenic differentiation. Higher expression of osteogenic markers, adipogenic markers, and neurogenic markers (NF-M, NeuN, and GFAP) was found in spheroids than in the monolayer. Spontaneous spheroids exhibited higher stemness than mechanical spheroids did. HIF-1α and HIF-2α were remarkably upregulated in spheroids. After HIF-1/2α-specific inhibition, spheroid formation was significantly reduced. Moreover, the expression of the pluripotency genes was suppressed. CONCLUSIONS: Spontaneous spheroids from AB-MSCs enhance stemness and pluripotency. HIF-1/2α plays an important role in the stemness regulation of spheroids. AB-MSC spheroids exhibit excellent multi-differentiation capability, which may be a potent therapy for craniomaxillofacial tissue regeneration.


Subject(s)
Animals , Mice , Spheroids, Cellular , Mesenchymal Stem Cells , Osteogenesis/genetics , Stem Cells , Cell Differentiation , Cells, Cultured , Cell Culture Techniques/methods , Hypoxia/metabolism , Mice, Inbred C57BL
3.
Journal of Medical Biomechanics ; (6): E190-E194, 2020.
Article in Chinese | WPRIM | ID: wpr-862311

ABSTRACT

Objective To explore the effect of concave and convex interface on in vitro culture of mouse embryonic stem cells. Methods Mouse embryonic stem cells were cultured on substrate with concave and convex interface. The biological morphology of cell colony was observed. The pluripotency of embryonic stem cells was detected by immunofluorescence and alkaline phosphatase (ALP) staining. Results Embryonic stem cells on concave substrates and convex substrates had higher stereo degree and circularity than those on flat substrates, but it was more obvious on concave substrates. Besides, the expression level of Oct4-GFP and the staining intensity of ALP in embryonic stem cells which were cultured on concave substrates and convex substrates were significantly higher than those on flat basement, especially on concave substrates. Conclusion sCompared with flat substrates, concave substrates and convex substrates had positive effects on the pluripotency maintenance of embryonic stem cells, which could help to maintain pluripotency, but concave substrates had better effects. Changing the substrate curvature could help to maintain pluripotency of embryonic stem cells cultured in vitro. The research findings are of great significance to the study and clinical application of embryonic stem cells.

4.
Protein & Cell ; (12): 709-725, 2019.
Article in English | WPRIM | ID: wpr-757880

ABSTRACT

Polycomb group (PcG) ring finger protein 6 (PCGF6), though known as a member of the transcription-repressing complexes, PcG, also has activation function in regulating pluripotency gene expression. However, the mechanism underlying the activation function of PCGF6 is poorly understood. Here, we found that PCGF6 co-localizes to gene activation regions along with pluripotency factors such as OCT4. In addition, PCGF6 was recruited to a subset of the super-enhancer (SE) regions upstream of cell cycle-associated genes by OCT4, and increased their expression. By combining with promoter capture Hi-C data, we found that PCGF6 activates cell cycle genes by regulating SE-promoter interactions via 3D chromatin. Our findings highlight a novel mechanism of PcG protein in regulating pluripotency, and provide a research basis for the therapeutic application of pluripotent stem cells.

5.
Protein & Cell ; (12): 668-680, 2019.
Article in English | WPRIM | ID: wpr-757870

ABSTRACT

Human embryonic stem cells (hESCs) depend on glycolysis for energy and substrates for biosynthesis. To understand the mechanisms governing the metabolism of hESCs, we investigated the transcriptional regulation of glucose transporter 1 (GLUT1, SLC2A1), a key glycolytic gene to maintain pluripotency. By combining the genome-wide data of binding sites of the core pluripotency factors (SOX2, OCT4, NANOG, denoted SON), chromosomal interaction and histone modification in hESCs, we identified a potential enhancer of the GLUT1 gene in hESCs, denoted GLUT1 enhancer (GE) element. GE interacts with the promoter of GLUT1, and the deletion of GE significantly reduces the expression of GLUT1, glucose uptake and glycolysis of hESCs, confirming that GE is an enhancer of GLUT1 in hESCs. In addition, the mutation of SON binding motifs within GE reduced the expression of GLUT1 as well as the interaction between GE and GLUT1 promoter, indicating that the binding of SON to GE is important for its activity. Therefore, SON promotes glucose uptake and glycolysis in hESCs by inducing GLUT1 expression through directly activating the enhancer of GLUT1.

6.
International Journal of Stem Cells ; : 430-439, 2019.
Article in English | WPRIM | ID: wpr-785831

ABSTRACT

BACKGROUND AND OBJECTIVES: Several recent studies have claimed that cancer cells can be reprogrammed into induced pluripotent stem cells (iPSCs). However, in most cases, cancer cells seem to be resistant to cellular reprogramming. Furthermore, the underlying mechanisms of limited reprogramming in cancer cells are largely unknown. Here, we identified the candidate barrier genes and their target genes at the early stage of reprogramming for investigating cancer reprogramming.METHODS: We tried induction of pluripotency in normal human fibroblasts (BJ) and both human benign (MCF10A) and malignant (MCF7) breast cancer cell lines using a classical retroviral reprogramming method. We conducted RNA-sequencing analysis to compare the transcriptome of the three cell lines at early stage of reprogramming.RESULTS: We could generate iPSCs from BJ, whereas we were unable to obtain iPSCs from cancer cell lines. To address the underlying mechanism of limited reprogramming in cancer cells, we identified 29 the candidate barrier genes based on RNA-sequencing data. In addition, we found 40 their target genes using Cytoscape software.CONCLUSIONS: Our data suggest that these genes might one of the roadblock for cancer cell reprogramming. Furthermore, we provide new insights into application of iPSCs technology in cancer cell field for therapeutic purposes.


Subject(s)
Humans , Breast Neoplasms , Cell Line , Cellular Reprogramming , Fibroblasts , Induced Pluripotent Stem Cells , Methods , Transcriptome , Zidovudine
7.
International Journal of Stem Cells ; : 474-483, 2019.
Article in English | WPRIM | ID: wpr-785826

ABSTRACT

In Parkinson’s disease (PD) research, human neuroblastoma and immortalized neural cell lines have been widely used as in vitro models. The advancement in the field of reprogramming technology has provided tools for generating patient-specific induced pluripotent stem cells (hiPSCs) as well as human induced neuronal progenitor cells (hiNPCs). These cells have revolutionized the field of disease modeling, especially in neural diseases. Although the direct reprogramming to hiNPCs has several advantages over differentiation after hiPSC reprogramming, such as the time required and the simple procedure, relatively few studies have utilized hiNPCs. Here, we optimized the protocol for hiNPC reprogramming using pluripotency factors and Sendai virus. In addition, we generated hiNPCs of two healthy donors, a sporadic PD patient, and a familial patient with the LRRK2 G2019S mutation (L2GS). The four hiNPC cell lines are highly proliferative, expressed NPC markers, maintained the normal karyotype, and have the differentiation potential of dopaminergic neurons. Importantly, the patient hiNPCs show different apoptotic marker expression. Thus, these hiNPCs, in addition to hiPSCs, are a favorable option to study PD pathology.


Subject(s)
Humans , Cell Line , Dopaminergic Neurons , Fibroblasts , In Vitro Techniques , Induced Pluripotent Stem Cells , Karyotype , Neuroblastoma , Neurons , Pathology , Sendai virus , Stem Cells , Tissue Donors
8.
Tissue Engineering and Regenerative Medicine ; (6): 751-760, 2018.
Article in English | WPRIM | ID: wpr-718790

ABSTRACT

BACKGROUND: Bone tissue engineering based on pluripotent stem cells (PSCs) is a new approach to deal with bone defects. Protocols have been developed to generate osteoblasts from PSCs. However, the low efficiency of this process is still an important issue that needs to be resolved. Many studies have aimed to improve efficiency, but developing accurate methods to determine efficacy is also critical. Studies using pluripotency to estimate efficacy are rare. Telomerase is highly associated with pluripotency. METHODS: We have described a quantitative method to measure telomerase activity, telomeric repeat elongation assay based on quartz crystal microbalance (QCM). To investigate whether this method could be used to determine the efficiency of in vitro osteogenic differentiation based on pluripotency, we measured the pluripotency pattern of cultures through stemness gene expression, proliferation ability and telomerase activity, measured by QCM. RESULTS: We showed that the pluripotency pattern determined by QCM was similar to the patterns of proliferation ability and gene expression, which showed a slight upregulation at the late stages, within the context of the general downregulation tendency during differentiation. Additionally, a comprehensive gene expression pattern covering nearly every stage of differentiation was identified. CONCLUSION: Therefore, this assay may be powerful tools for determining the efficiency of differentiation systems based on pluripotency. In this study, we not only introduce a new method for determining efficiency based on pluripotency, but also provide more information about the characteristics of osteogenic differentiation which help facilitate future development of more efficient protocols.


Subject(s)
Bone and Bones , Down-Regulation , Gene Expression , In Vitro Techniques , Methods , Mouse Embryonic Stem Cells , Osteoblasts , Pluripotent Stem Cells , Quartz Crystal Microbalance Techniques , Telomerase , Up-Regulation
9.
Tissue Engineering and Regenerative Medicine ; (6): 649-659, 2018.
Article in English | WPRIM | ID: wpr-717538

ABSTRACT

BACKGROUND: Stem cell therapy requires a serum-free and/or chemically-defined medium for commercialization, but it is difficult to find one that supports long-term expansion of cells without compromising their stemness, particularly for novel stem cells. METHODS: In this study, we tested the efficiency of StemPro® MSC SFM Xeno Free (SFM-XF), a serum-free medium, for the long-term expansion of human fetal cartilage-derived progenitor cells (hFCPCs) from three donors in comparison to that of the conventional α-Modified Eagle's Medium (α-MEM) supplemented with 10% fetal bovine serum (FBS). RESULTS: We found that SFM-XF supported the expansion of hFCPCs for up to 28–30 passages without significant changes in the doubling time, while α-MEM with 10% FBS showed a rapid increase in doubling time at 10–18 passages depending on the donor. Senescence of hFCPCs was not observed until passage 10 in both media but was induced in approximately 15 and 25% of cells at passage 20 in SFM-XF and α-MEM with 10% FBS, respectively. The colony forming ability of hFCPCs in SFX-XF was also comparable to that in α-MEM with 10% FBS. hFCPCs expressed pluripotency genes like Oct-4, Sox-2, Nanog, SCF, and SSEA4 at passage 20 and 31 in SFM-XF; however, this was not observed when cells were cultured in α-MEM with 10% FBS. The ability of hFCPCs to differentiate into three mesodermal lineages decreased gradually in both media but it was less significant in SFM-XF. Finally we found no chromosomal abnormality after long-term culture of hFCPCs until passage 17 by karyotype analysis. CONCLUSION: These results suggest that SFM-XF supports the long-term expansion of hFCPCs without significant phenotypic and chromosomal changes. This study have also shown that hFCPCs can be mass-produced in vitro, proving their commercial value as a novel source for developing cell therapies.


Subject(s)
Humans , Aging , Cartilage , Cell- and Tissue-Based Therapy , Chromosome Aberrations , In Vitro Techniques , Karyotype , Mesoderm , Stem Cells , Tissue Donors
10.
Protein & Cell ; (12): 379-393, 2017.
Article in English | WPRIM | ID: wpr-757327

ABSTRACT

Human pluripotent stem cells (hPSCs) are an important system to study early human development, model human diseases, and develop cell replacement therapies. However, genetic manipulation of hPSCs is challenging and a method to simultaneously activate multiple genomic sites in a controllable manner is sorely needed. Here, we constructed a CRISPR-ON system to efficiently upregulate endogenous genes in hPSCs. A doxycycline (Dox) inducible dCas9-VP64-p65-Rta (dCas9-VPR) transcription activator and a reverse Tet transactivator (rtTA) expression cassette were knocked into the two alleles of the AAVS1 locus to generate an iVPR hESC line. We showed that the dCas9-VPR level could be precisely and reversibly controlled by the addition and withdrawal of Dox. Upon transfection of multiplexed gRNA plasmid targeting the NANOG promoter and Dox induction, we were able to control NANOG gene expression from its endogenous locus. Interestingly, an elevated NANOG level promoted naïve pluripotent gene expression, enhanced cell survival and clonogenicity, and enabled hESCs to integrate with the inner cell mass (ICM) of mouse blastocysts in vitro. Thus, iVPR cells provide a convenient platform for gene function studies as well as high-throughput screens in hPSCs.


Subject(s)
Animals , Humans , Mice , Cell Line , Clustered Regularly Interspaced Short Palindromic Repeats , Doxycycline , Pharmacology , Gene Expression Regulation , Human Embryonic Stem Cells , Metabolism , Nanog Homeobox Protein , Genetics , Pluripotent Stem Cells , Metabolism
11.
Appl. cancer res ; 37: 1-8, 2017. ilus
Article in English | LILACS, Inca | ID: biblio-915112

ABSTRACT

Induced Pluripotent Stem Cells (iPSCs) technology has catapulted the field of stem-cell biology through ectopic expression of reprogramming factors. Ever since its discovery, the potential of iPSCs has been explored by many scientists to unravel the molecular mechanism responsible for cancer initiation and progression. Besides modeling cancer, the further applications of this technology includes high-throughput drug screening, epigenetic reprogramming of cancer cell state to normal, immunotherapy and regenerative cell therapies. Here, we review the current challenges on clinical applications of iPSCs with respect to understanding cancer and personalizing treatment for the disease (AU)


Subject(s)
Humans , Stem Cells , Pluripotent Stem Cells , Molecular Mechanisms of Pharmacological Action , Neoplasms/therapy
12.
International Journal of Stem Cells ; : 93-102, 2017.
Article in English | WPRIM | ID: wpr-91145

ABSTRACT

BACKGROUND: Application of competent cells such as mesenchymal stem cells (MSCs) for treatment of musculoskeletal disorders in equine athletes is increasingly needed. Moreover, similarities of horse and human in size, load and types of joint injuries, make horse as a good model for MSCs therapy studies. This study was designed to isolate and characterize stemness signature of equine bone marrow-derived mesenchymal stem cells (BM-MSCs). METHODS: BM of three mares was aspirated and the mononuclear cells (MNCs) were isolated using density gradient. The primary MNCs were cultured and analyzed after tree passages (P3) for growth characteristics, differentiation potentials, and the expression of genes including CD29, CD34, CD44, CD90, CD105, MHC-I, MHC-II and pluripotency related genes (Nanog, Oct-4, Sox-2, SSEA-1, -3, -4) using RT-PCR or immunocytochemistry techniques. RESULTS: The isolated cells in P3 were adherent and fibroblast-like in shape with doubling times of 78.15 h. Their clonogenic capacity was 8.67±4% and they were able to differentiate to osteogenic, adipogenic and chondrogenic lineages. Cells showed expression of CD29, CD44, CD90, MHC-I and Sox-2 while no expression for CD34, MHC-II, CD105, and pluripotency stemness markers was detected. CONCLUSIONS: In conclusion, data showed that isolated cells have the basic and minimal criteria for MSCs, however, expressing only one pluripotency gene (sox-2).


Subject(s)
Humans , Lewis X Antigen , Athletes , Bone Marrow , Horses , Immunohistochemistry , Joints , Mesenchymal Stem Cells , Trees
13.
Acta Laboratorium Animalis Scientia Sinica ; (6): 358-363, 2016.
Article in Chinese | WPRIM | ID: wpr-500738

ABSTRACT

Objective To explore whether Helq deletion affect the pluripotency of stem cells. Methods Helq knockout embryonic stem cells were obtained by CRISPR?Cas9 gene editing technique. Results The results of immunoflu?orescence analysis showed that the expression of Oct4 and Nanog had no obvious difference to that of the control cells. The Helq-/ - embryonic stem cells could produce viable pups by tetraploid complementation, indicating that their pluripotency was not affected. Meanwhile, we found that day 2 epiblast?like cells also were obtained through differentiation of the Helq-/ - embryonic stem cells in vitro. Immunostaining and real?time PCR analysis showed that the gene expression of Helq-/ - epiblast cells were similar to the wild type cells. Conclusions Taken together, it is proved that the genomic in?stability caused by Helq deletion does not affect the pluripotency of pluripotent stem cells.

14.
Medical Journal of Chinese People's Liberation Army ; (12): 168-174, 2016.
Article in Chinese | WPRIM | ID: wpr-850032

ABSTRACT

Spermatogonial stem cells (SSCs) have the ability of self-renewal and differentiate into sperm throughout the life of male animals. They are the unique adult stem cells that transmit genetic information to subsequent generations. Recently, accumulating evidences have demonstrated that SSCs can be reprogrammed to become ES-like cells that differentiate into all cell lineages of the three germ layers. These studies were mainly focused on non-primate mammals. Therefore, this review summarized the characterization, isolation, purification, cultivation, identification and transplantation of SSCs in non-primate mammals, and discussed the unlimited pluripotency and plasticity of SSCs. We also provided valuable insights of SSCs in the treatment of male infertility and application potential of human regenerative medicine.

15.
Protein & Cell ; (12): 820-832, 2016.
Article in English | WPRIM | ID: wpr-757368

ABSTRACT

Biological rhythms controlled by the circadian clock are absent in embryonic stem cells (ESCs). However, they start to develop during the differentiation of pluripotent ESCs to downstream cells. Conversely, biological rhythms in adult somatic cells disappear when they are reprogrammed into induced pluripotent stem cells (iPSCs). These studies indicated that the development of biological rhythms in ESCs might be closely associated with the maintenance and differentiation of ESCs. The core circadian gene Clock is essential for regulation of biological rhythms. Its role in the development of biological rhythms of ESCs is totally unknown. Here, we used CRISPR/CAS9-mediated genetic editing techniques, to completely knock out the Clock expression in mouse ESCs. By AP, teratoma formation, quantitative real-time PCR and Immunofluorescent staining, we did not find any difference between Clock knockout mESCs and wild type mESCs in morphology and pluripotent capability under the pluripotent state. In brief, these data indicated Clock did not influence the maintaining of pluripotent state. However, they exhibited decreased proliferation and increased apoptosis. Furthermore, the biological rhythms failed to develop in Clock knockout mESCs after spontaneous differentiation, which indicated that there was no compensational factor in most peripheral tissues as described in mice models before (DeBruyne et al., 2007b). After spontaneous differentiation, loss of CLOCK protein due to Clock gene silencing induced spontaneous differentiation of mESCs, indicating an exit from the pluripotent state, or its differentiating ability. Our findings indicate that the core circadian gene Clock may be essential during normal mESCs differentiation by regulating mESCs proliferation, apoptosis and activity.


Subject(s)
Animals , Mice , Apoptosis , Base Sequence , CLOCK Proteins , Genetics , Metabolism , CRISPR-Cas Systems , Cell Differentiation , Cell Proliferation , Cellular Reprogramming , Circadian Clocks , Genetics , Gene Editing , Gene Expression Regulation , Gene Knockout Techniques , Hepatocyte Nuclear Factor 3-beta , Genetics , Metabolism , Induced Pluripotent Stem Cells , Cell Biology , Metabolism , Mouse Embryonic Stem Cells , Cell Biology , Metabolism , SOXB1 Transcription Factors , Genetics , Metabolism
16.
International Journal of Biomedical Engineering ; (6): 189-192, 2014.
Article in Chinese | WPRIM | ID: wpr-453367

ABSTRACT

Stem cells have self-renewal and differentiation potential.Cyclin-dependent kinase (CDK) plays an important role in promoting pluripotency and self-renewal.The crucial activity of S-phase,DNA replication,presents a unique opportunity during the cell cycle for the genetic and epigenetic regulation that may be involved in stabilizing the pluripotent state.It is also clear that Myc acts to coordinate both the cell cycle and the pluripotency transcription network in stem cells.Here we review the regulating mechanisms of stem cell cycles and pluripotency by CDK and Myc to help researchers obtain a better understanding of mutual regulation of the cell cycle and the pluripotent state by CDK and Myc which may be exploited in regenerative medicine.

17.
International Journal of Stem Cells ; : 55-62, 2014.
Article in English | WPRIM | ID: wpr-63301

ABSTRACT

Pluripotent stem cells (PSCs) have been considered as the most important cells in regenerative medicine as they are able to differentiate into all types of cells in the human body. PSCs have been established from several sources of embryo tissue or by reprogramming of terminally differentiated adult tissue by transduction of so-called Yamanaka factors (Oct4, Sox2, Klf4, and cMyc). Interestingly, accumulating evidence has demonstrated the residence of PSCs in adult tissue and with the ability to differentiate into multiple types of tissue-committed stem cells (TCSCs). We also recently demonstrated that a population of pluripotent Oct4(+) SSEA-1(+)Sca-1(+)Lin-CD45(-) very small embryonic-like stem cells (VSELs) resides in the adult murine bone marrow (BM) and in other murine tissue. These very small (~3-6 microm) cells express pluripotent markers such as Oct4, Nanog, and SSEA-1. VSELs could be specified into several tissue-residing TCSCs in response to tissue/organ injury, and thus suggesting that these cells have a physiological role in the rejuvenation of a pool of TCSCs under steady-state conditions. In this review article, we discuss the molecular nature of the rare population of VSELs which have a crucial role in regulating the pluripotency, proliferation, differentiation, and aging of these cells.


Subject(s)
Adult , Humans , Aging , Lewis X Antigen , Bone Marrow , DNA Methylation , Embryonic Structures , Genomic Imprinting , Human Body , Pluripotent Stem Cells , Regenerative Medicine , Rejuvenation , Stem Cells
18.
International Journal of Stem Cells ; : 143-152, 2014.
Article in English | WPRIM | ID: wpr-63291

ABSTRACT

BACKGROUND AND OBJECTIVES: Recent findings suggest that therapeutic potential of mesenchymal stem cells (MSCs) could be increased through aggregation into three-dimensional (3D) bodies, and different culture methods have been employed to obtain 3D spheroids of MSCs. In the current study we report accidentally encountered spontaneous formation of adipose-derived stem cell (ASC) bodies in standard ASC culture of a single donor. METHODS AND RESULTS: Human ASCs from passages 1 to 3, cultured in a medium containing 5% autologous serum (AS), spontaneously clustered and formed floating 3D bodies. After a transfer of floating ASC bodies onto new adherent plastic dish, they attached to the surface and gradual migration of spindle-shaped ASCs out of the bodies was detected. A substitution of AS with allogeneic sera did not hinder this ability, but commercial medium containing fetal bovine serum delayed the process. Substantial part of ASCs surrounding transferred ASC bodies showed alkaline phosphatase (AP) activity, while ASC aggregates were AP negative. Similar 3D bodies formed when ASCs were grown on an uncoated glass surface. These ASC aggregates as well as clusters of ASCs, where formation of the 3D bodies is initiated, expressed pluripotency marker NANOG, but the expression of OCT4A was not detected. CONCLUSIONS: Obtained results suggest that spontaneously formed ASC aggregates may represent a more primitive cell subpopulation within the individual ASC culture. The ability to form 3D aggregates, the expression of NANOG, and the lack of the AP activity may be used to enrich ASC cultures with potentially more primitive cells serving as an excellent basis for therapeutic applications.


Subject(s)
Humans , Alkaline Phosphatase , Glass , Mesenchymal Stem Cells , Plastics , Stem Cells , Tissue Donors
19.
Pesqui. vet. bras ; 33(supl.1): 113-118, dez. 2013. ilus
Article in English | LILACS | ID: lil-705861

ABSTRACT

Transgenic technology has become an essential tool for the development of animal biotechnologies, and animal cloning through somatic cell nuclear transfer (SCNT) enabled the generation of genetically modified animals utilizing previously modified and selected cell lineages as nuclei donors, assuring therefore the generation of homogeneous herds expressing the desired modification. The present study aimed to discuss the use of SCNT as an important methodology for the production of transgenic herds, and also some recent insights on genetic modification of nuclei donors and possible effects of gene induction of pluripotency on SCNT.


Tecnologias de modificação genética têm se tornado ferramentas essenciais para o desenvolvimento de biotecnologias animais. A clonagem animal mediante transferência nuclear de célula somática (TNCS) possibilitou a geração de animais geneticamente modificados através da utilização de linhagens celulares previamente modificadas e selecionadas como doadoras de núcleo, garantindo desta maneira a geração de rebanhos homogênoes expressando a modificação desejada. O presente estudo objetivou discutir o uso da TNCS como importante metodologia para a produção de rebanhos transgênicos, assim como experiências recentes na manipulação genética de células doadoras de núcleo e possíveis efeitos da indução gênica à pluripotência na TNCS.


Subject(s)
Animals , Cattle , Animals, Genetically Modified/genetics , Biotechnology/methods , Pluripotent Stem Cells/transplantation , Cloning, Organism/veterinary , Nuclear Transfer Techniques/veterinary
20.
Chinese Journal of Clinical Oncology ; (24): 1523-1527, 2013.
Article in Chinese | WPRIM | ID: wpr-439787

ABSTRACT

Objective:To investigate the effect of simvastatin on expression of pluripotent markers Oct3/4, Nanog, and Sox-2 in human breast cancer MCF-7 cells. Methods:Quantitative reverse transcription-polymerase chain reaction (qRT-PCR), immunofluo-rescent staining, flow cytometry, and Western blot were used to detect the expression of pluripotency markers Oct3/4, Nanog, and Sox-2 in human breast cancer MCF-7 cells treated with different doses of simvastatin. Results:qRT-PCR revealed the more signifi-cant inhibition of gene expressions of Oct3/4, Nanog, and Sox-2 in human breast cancer MCF-7 cells when subjected to high doses of simvastatin (10, 50, and 100 μmol/L) compared with the control group (P0.05). The inhibitory effect of simvastatin on the gene expressions of Oct3/4 and Nanog was more significantly apparent at 50 and 100 μmol/L dosages than at 10 μmol/L (P0.05). Between the two higher-dose treatments (50 and 100 μmol/L), no significant difference in the inhibitory expressions of Oct3/4, Nanog, and Sox-2 in MCF-7 cells was found. Meanwhile, in the 10 μmol/L simvastatin treatment, immunoflurescent staining showed a marked reduction in the protein expression of all three pluripotent markers in MCF-7 cells, and flow cytometry demonstrated a decrease of Oct3/4-, Nanog-, and Sox-2-positive cells (P<0.05). Western blot further revealed that the protein expression of Oct3/4, Nanog, and Sox-2 in MCF-7 cells was significantly declined by the same simvastatin dose (P<0.05). Conclusion: Simvastatin can inhibit the expression of pluripotent markers Oct3/4, Nanog, and Sox-2 in human breast cancer MCF-7 cells, proving the anti-cancer properties of simvastatin.

SELECTION OF CITATIONS
SEARCH DETAIL